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Numerical Simulation Using ADI–FDTD Method
to Estimate Shielding Effectiveness of

Thin Conductive Enclosures
Takefumi Namiki, Member, IEEE,and Koichi Ito, Member, IEEE

Abstract—Numerical simulations were run using the alter-
nating-direction implicit–finite-difference time-domain (ADI–
FDTD) method to calculate the shielding effectiveness of various
enclosures. The enclosures were composed of very thin conductive
sheets, which are generally fabricated using conductive paints or
electroless plating techniques on plastic surfaces. In this case, very
fine cells must be used for finite-difference time-domain (FDTD)
modeling. In the conventional FDTD method, fine cells reduce
the time-step size because of the Courant–Friedrich–Levy (CFL)
stability condition, which results in an increase in computational
effort, such as the central processing unit (CPU) time. In the
ADI–FDTD method, on the other hand, a larger time-step size
than allowed by the CFL stability condition limitation can be set
because the algorithm of this method is unconditionally stable.
Consequently, an increase in computational efforts caused by fine
cells can be prevented. The results from the ADI–FDTD method
were compared with results from the conventional FDTD method,
analytical solutions, and experimental data. These results clearly
agree quite well, and the required CPU time for the ADI–FDTD
method can be much shorter than that for the FDTD method.

Index Terms—ADI–FDTD method, CFL stability condition,
FDTD method, shielding effectiveness.

I. INTRODUCTION

I N RECENT years, it has become increasingly important to
estimate the electromagnetic shielding effectiveness (SE) of

the cases that enclose various types of electronic equipment.
For optimal cost efficiency, using a numerical technique during
the design phase of the equipment is indispensable for esti-
mating the SE of various shapes and materials for these enclo-
sures. The finite-difference time-domain (FDTD) method [1] is
well known as being one of the most useful numerical tech-
niques for such problems. However, for calculating the effec-
tiveness of an enclosure whose thickness is much smaller than
the operating wavelength, the conventional FDTD method has
a disadvantage. For the FDTD modeling, very fine cells must
be used in the region with thin sheets, and these fine cells re-
duce the time-step size because of the Courant–Friedrich–Levy
(CFL) stability condition [2], which results in an increase in
computational effort, such as the CPU time. In fact, several mi-
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crometer-thick thin shielding sheets, which are generally fabri-
cated using conductive paints or electroless plating techniques
on plastic surfaces, are often used today, thus, the inefficiency
of the FDTD method is a very serious issue for optimizing the
design process.

We previously proposed the alternating-direction implicit–fi-
nite-difference time-domain (ADI–FDTD) method for solving
two-dimensional Maxwell’s equations [3] and extended it to
three dimensions [4]–[6]. We showed that the algorithm of the
method is unconditionally stable and free from the CFL stability
condition restraint. Soon after having published our findings,
Zhenget al. reported the same approach [7] and theoretically
proved the stability of the scheme in three dimensions [8].

Since the limitation on the maximum time-step size in the
ADI–FDTD method is no longer dependent on the CFL stability
condition, the maximum time-step size is limited by numerical
errors that depend on what kinds of problems or models are cal-
culated. On the other hand, the maximum time-step size is cer-
tainly limited by the maximum frequency of the pulse spectrum,
in accordance with the Nyquist sampling theorem, when the
broad-band frequency characteristics are calculated by applying
a Fourier transformation to the impulse response of the time-do-
main simulation. However, this limitation is not very strict, es-
pecially if the frequency in question is not relatively very high.

In this paper, we propose using the ADI–FDTD method to
solve the above shielding problems. The characteristics of the
SE of various enclosures are calculated using the ADI–FDTD
method, and the results for this method are compared with re-
sults for the conventional FDTD method, experimental data, and
analytical solutions. This research is intended to be applied for
recent high-speed digital electronic equipment, thus, the exam-
ined frequency bandwidth is set to about 100 MHz–1 GHz. In
Sections II and III, two-dimensional problems are discussed,
and inSection IV, three-dimensional problems are discussed.

II. SHIELDING OF PLANE WAVE BY THIN METAL SHEET

A. Numerical Modeling

Before analyzing enclosures, simple plane sheets are exam-
ined. Fig. 1 shows a two-dimensional FDTD model that includes
a thin metal sheet to shield plane waves. For the sake of expla-
nation, the figure scale of the numerical model shown here is
different from that of the real model. Two electric-field com-
ponents ( and ) and one magnetic-field component
are arranged on the cells in the computational domain. Mur’s
first-order absorbing boundary conditions (ABCs) [9] are set at
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Fig. 1. Numerical model of thin metal sheet to shield plane wave.

TABLE I
(a) SPATIAL DISCRETIZATION OF COPPERSHEET MODEL. (b) SPATIAL

DISCRETIZATION OFIRON SHEET MODEL

(a)

(b)

the -directional terminals of the domain, and perfect electric
conductor (PEC) boundary conditions are set at the-directional
terminals of the domain. Numerical simulations are carried out
for two kinds of sheets. One is a 4-m-thick copper sheet with
a relative permittivity of 1.0, relative permeability of 1.0, and
conductivity of 5.8 10 S/m. The other is a 2-m-thick iron
sheet with a relative permittivity of 1.0, relative permeability of
140.0, and conductivity of 0.986 10 S/m. Uniform cells are
used in the -direction, and nonuniform cells are used in the

-direction, to treat both the thin sheets and horizontally wide
computational region. In addition, around the metal sheet
region is set sufficiently smaller than the minimum skin depth
of the metal at the maximum frequency required for the exam-
ination. Table I(a) and (b) describes the spatial discretization
of the copper and iron sheets, respectively. In the copper sheet
model, the conductive sheet region is divided into eight cells,
and the minimum cell size is 0.5m 0.5 mm. Therefore, the
CFL stability condition of this model is fs. In
the iron sheet model, the conductive sheet region is divided into
20 cells, and the minimum cell size is 0.1m 0.1 mm. The

(a)

(b)

Fig. 2. (a) Normalized electric field versus time of copper sheet mode.
(b) Normalized electric field versus time of iron sheet model. (Solid line:
conventional FDTD, dashed line: ADI–FDTD.)

CFL stability condition of this model is fs. The
time-step size for the conventional FDTD method is set so as to
satisfy the CFL stability condition, and the time-step size for the
ADI–FDTD method is set much larger than the previous size. A
Gaussian pulse is applied at the components on the excita-
tion plane, and the components at observation pointsand

are output. The waveform of the applied pulse is as follows:

ps ps

B. Numerical Results

Fig. 2 shows the observed electric fields, which are nor-
malized by the value of the incident pulse amplitude. Incident
and reflected pulses are observed at pointand a transmitted
pulse is observed at point . The numerical results for the
ADI–FDTD method and for the conventional FDTD method
agree quite well. The transmitted pulse drags a long tail in the
time domain because of multireflections in the metal sheet
region, thus, the number of time-loop iterations that should be
done in the numerical calculation is dependent on this tail. The
SE values are calculated by applying a Fourier transformation
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Fig. 3. SE versus frequency of Fig. 1 model (solid line: conventional FDTD,
dashed line: ADI–FDTD, dotted line: rigorous solution[10]).

TABLE II
(a) TIME-STEPPINGMODELING AND COMPUTATIONAL EFFORT FOR THE

SIMULATION OF COPPERSHEET MODEL. (b) TIME-STEPPINGMODELING AND

COMPUTATIONAL EFFORT FOR THESIMULATION OF IRON SHEET MODEL

(a)

(b)

to the incident and transmitted pulses. Fig. 3 shows these SE
values with rigorous solutions derived by Schelkunoff’s theory
[10]. The numerical results from the ADI–FDTD method, the
conventional FDTD method, and the rigorous solution clearly
agree quite well. Table II lists the required computational
effort for these simulations, along with information about their
time-stepping modeling. All calculations in this paper were
performed on an Ultra SPARC II 360-MHz workstation. Since
the time-step size for the ADI–FDTD method can be set about
400 or 2000 times larger than that for the conventional FDTD
method, the CPU time for the ADI–FDTD method can be
reduced to about 1.0% or 0.2% of that for the conventional
FDTD method while maintaining the same level of accuracy.

III. SHIELDING EFFECTIVENESS OFTWO-DIMENSIONAL

CONDUCTIVE ENCLOSURE

A. Numerical Modeling

Fig. 4 shows a two-dimensional FDTD model that includes a
square enclosure composed of thin conductive sheets to shield
the electromagnetic field excited by a small electric dipole.
The electromagnetic-field components are arranged in the
same way as the previous model. Mur’s ABC is applied at all
outer surfaces of the computational domain. The enclosure is a
0.015-mm-thick conductive sheet with a relative permittivity
of 1.0, relative permeability of 1.0, and conductivity of 1.0
10 S/m. Table III describes the-directional spatial discretiza-
tion of a quarter region of the domain. The model is clearly

Fig. 4. Numerical model of square enclosure composed of thin conductive
sheets to shield field excited by two-dimensional dipole.

TABLE III
SPATIAL DISCRETIZATION OFFIG. 4 MODEL

Fig. 5. SE versus frequency of Fig. 4 model (solid line: conventional FDTD,
other lines: ADI–FDTD with different time-step sizes).

TABLE IV
TIME-STEPPINGMODELING AND COMPUTATIONAL EFFORT FOR THE

SIMULATION OF FIG. 4 MODEL

symmetrical with respect to the center of the domain; therefore,
the spatial discretization of the domain is also set symmetri-
cally. The conductive sheet region is divided into three cells,
and the minimum cell size is 0.005 0.005 mm. Therefore,
the CFL stability condition of this model is fs.
The time-step size for the conventional FDTD method is set so
as to satisfy the CFL stability condition, and the time-step size
for the ADI–FDTD method is set much larger than the previous
size. A physical time for each simulation, which is a product
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(a) (b)

(c) (d)

Fig. 6. Numerical model consists of half-cubic conductive shell on ground plane. (a) Bird’s-eye view. (b) Top view. (c) Side view. (d) Spatial discretization of
half-cubic conductive shell model (side view).

of the time-step size and the number of time-loop iterations,
must be about 3.0 ns for the oscillation of the output pulse to
converge.

A partial Gaussian pulse is applied to thecomponent at the
excitation point, and the component at the observation point
is output. The waveform of the applied pulse is as follows:

ns ns

Numerical simulations are performed twice, with and without
the enclosure. The SE values are calculated by applying a
Fourier transformation to each output field.

B. Numerical Results

Fig. 5 shows the SE values calculated by the conventional
FDTD method and the ADI–FDTD method, which is performed
with different time-step sizes. Increasing the time-step size in-
creases the numerical error. However, the numerical results for
the ADI–FDTD method performed with ps and
those for the conventional FDTD method performed with

fs agree quite well. Table IV lists the computational effort
and time-stepping modeling parameters for this simulation. The
time-step size for the ADI–FDTD method can be set about 1200
times larger than that for the conventional FDTD method. The
CPU time for the ADI–FDTD method can thereby be reduced

TABLE V
THREE TYPES OFHALF-CUBIC CONDUCTIVE SHELLS

to about 0.4% of that for the conventional FDTD method while
maintaining the same level of accuracy.

IV. SHIELDING EFFECTIVENESS OFTHREE-DIMENSIONAL

CONDUCTIVE ENCLOSURES

A. Numerical Modeling

Fig. 6 shows a three-dimensional FDTD model for estimating
SE. It consists of a half-cubic conductive shell on a ground
plane. The numerical simulations are performed in the same way
as for the previous two-dimensional models. Nonuniform cells
are used to treat both the thin sheets of the shell and a wide
computational region. A partial Gaussian pulse is applied at the
excitation point, and the field at the observation point is output.
The waveform of the applied pulse is as follows:

ns ns
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(a)

(b)

Fig. 7. (a) SE for electric field of type-1 model. (b) SE for magnetic field of
type-1 model. (Solid line: conventional FDTD, dashed line: ADI–FDTD, dotted
line: approximated analytical solution [12], [13] for equivalent radius of 26.7
mm, circular symbol: experimental data [11].)

Numerical calculations are carried out two times, with and
without the shell. The SE values are calculated by applying
a Fourier transformation to each output field. To estimate the
electric-field SE, vertical electric-field components are used
for excitation and observation. To estimate the magnetic-field
SE, horizontal magnetic-field components are used rather than
vertical electric-field components. Mur’s ABC is applied at
all outer surfaces of the computational domain, except the
bottom ground plane. The SE values are calculated for three
types of shells, which Table V describes in greater detail,
using the ADI–FDTD method and the conventional FDTD
method. These results are compared with experimental data
and analytical solutions.

The experimental data is derived from [11]. To measure the
electric-field SE, small dipole antennas were placed at the ex-
citation point as the source and at the observation point as the
detector. Instead of dipole antennas, small loop antennas were
used to measure the magnetic-field SE. The approximated an-
alytical solutions are calculated using formulas from [12] and
[13]. The SE values for the electric and magnetic fields of a con-
ductive spherical shell of arbitrary size can be estimated by this
theory. To adapt this theory to the cubic shell shown in Fig. 6, a
sphere with an inner surface area equivalent to the external sur-
face area of the cubic shell is considered. The equivalent radius
indicates the radius of this sphere. The thickness of the spherical
shell is the same as that of the cubic one.

TABLE VI
TIME-STEPPINGMODELING AND COMPUTATIONAL EFFORT FOR THE

SIMULATION OF TYPE-1 MODEL

TABLE VII
TIME-STEPPINGMODELING AND COMPUTATIONAL EFFORT FOR THE

SIMULATION OF TYPE-2 MODEL

TABLE VIII
TIME-STEPPINGMODELING AND COMPUTATIONAL EFFORT FOR THE

SIMULATION OF TYPE-3 MODEL

B. Numerical Results

Fig. 7 shows the SE values for electric and magnetic fields
for a type-1 shell. The numerical results for the ADI–FDTD
and conventional FDTD agree quite well. Moreover, they cor-
respond with the approximated analytical solution and are quite
similar to the experimental data. In the type-1 model, the 3-mm-
thick conductive shell region is divided into three cells, thus,
the minimum cell size is 1.0 1.0 1.0 mm . Therefore,
the CFL stability condition of this model is ps.
Table VI lists the computational effort and time-stepping mod-
eling parameters. The time-step size for the conventional FDTD
method is set so as to satisfy the CFL stability condition, and the
time-step size for the ADI–FDTD method can be set ten times
larger than the previous size. Consequently, the required CPU
time for the ADI–FDTD method is reduced to 47% of that for
the conventional FDTD method.

Fig. 8(a) shows the SE values for an electric field for a type-2
shell. The numerical results from the ADI–FDTD method, con-
ventional FDTD method, and approximated analytical solution
all agree quite well. Fig. 8(b) shows the SE values for a mag-
netic field for a type-2 shell. The numerical results from the
ADI–FDTD method and the approximated analytical solution
agree well. However, for reasons that are unclear, the numer-
ical results from the conventional FDTD method are obviously
abnormal. In the type-2 model, the 0.375-mm-thick conductive
shell region is divided into three cells, thus, the minimum cell
size is 0.125 0.125 0.125mm. Therefore, the CFL stability
condition of this model is ps. Table VII lists the
computational effort and time-stepping modeling parameters.
The time-step size for the ADI–FDTD method is set 40 times
larger than the previous size. Consequently, the required CPU
time for the ADI–FDTD method is reduced to 9.8% of that for
the conventional FDTD method.
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(a) (b)

Fig. 8. (a) SE for electric field of type-2 model. (b) SE for magnetic field of type-2 model. (Solid line: conventional FDTD, dashed line: ADI–FDTD, dotted line:
approximated analytical solution for equivalent radius of 37.3 mm.)

(a) (b)

Fig. 9. (a) SE for electric field of type-3 model. (b) SE for magnetic field of type-3 model. (Dashed line: ADI–FDTD, dotted line: approximated analytical
solution for equivalent radius of 37.3 mm, circular symbols: experimental data [11].)

(a) (b)

Fig. 10. (a) SE for electric field of type-3 model. (b) SE for magnetic field of type-3 model. (Dotted line: approximated analytical solution for equivalent radius
of 37.3 mm, other lines: ADI–FDTD with different time-step sizes.)

Fig. 9 shows the SE values for electric and magnetic fields
for a type-3 shell. The numerical results for the ADI–FDTD
method and approximated analytical solution agree quite well.
Moreover, they are quite similar to the experimental data. There
are no results for the conventional FDTD method here because
ordinary calculations cannot be done for this model if the con-
ventional FDTD method is used. The reason is as follows. Since
the time-step size is very small, the applied pulse is excited over
very long time periods, and its amplitude grows very slowly.
In this case, the pulse does not correctly propagate in the com-
putational domain. To prevent that, a pulse with a short width

in the time-domain must be used. However, such a pulse in-
cludes a frequency component so high that the maximum cell
size in the computational domain must become much smaller,
which results in a significant increase in computational effort.
In the type-3 model, the 0.024-mm-thick conductive shell re-
gion is divided into three cells, thus, the minimum cell size is
0.008 0.008 0.008 mm. Therefore, the CFL stability con-
dition of this model is fs. Although numerical
results cannot be obtained by the conventional FDTD method,
Table VIII lists the estimated computational effort for the two
methods. The time-step size for the ADI–FDTD method is set 62
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times larger than that for the conventional FDTD method. Con-
sequently, the required CPU time for the ADI–FDTD method is
reduced to 6.2% of that for the conventional FDTD method.

Fig. 10 shows the SE values for a type-3 shell calculated
by the ADI–FDTD method, which is performed with different
time-step sizes. Increasing the time-step size increases the nu-
merical error, and the error is substantial at higher frequencies.
The reason is probably that the phase velocity of an electromag-
netic wave is faster at a higher frequency in a lossy medium. In
other words, in shielding problems, the maximum time-step size
is limited by the velocity of an electromagnetic wave in the con-
ductive sheet region.

V. CONCLUSION

Numerical simulations using the ADI–FDTD method have
been presented for solving the shielding problems of various
enclosures composed of thin conductive sheets. These numer-
ical results were compared with those from the conventional
FDTD method, analytical solutions, and experimental data. The
results agree quite well, except for some incorrect numerical
results from the conventional FDTD method. The ADI–FDTD
method guarantees a stable calculation with any time-step size,
and a large time-step size reduces both the number of time-loop
iterations and the required CPU time for the calculation. The
required CPU time for the ADI–FDTD method is clearly much
shorter than that for the conventional FDTD method. The
ADI–FDTD method is an efficient and accurate numerical
technique for estimating the SE when designing shielding for
electronic equipment.
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